bit/sha256.h
2025-01-08 22:15:02 +00:00

244 lines
6 KiB
C

#ifndef SHA256_H_
#define SHA256_H_
#include <stddef.h>
#include <stdint.h>
#define SHA256_SIZE_BYTES (32)
#ifdef __cplusplus
extern "C"
{
#endif
typedef struct {
uint8_t buf[64];
uint32_t hash[8];
uint32_t bits[2];
uint32_t len;
uint32_t rfu__;
uint32_t W[64];
} sha256_context;
#ifndef _cbmc_
#define __CPROVER_assume(...) do {} while(0)
#endif
#define FN_ static inline __attribute__((const))
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
FN_ uint8_t _shb(uint32_t x, uint32_t n)
{
return ((x >> (n & 31)) & 0xff);
}
FN_ uint32_t _shw(uint32_t x, uint32_t n)
{
return ((x << (n & 31)) & 0xffffffff);
}
FN_ uint32_t _r(uint32_t x, uint8_t n)
{
return ((x >> n) | _shw(x, 32 - n));
}
FN_ uint32_t _Ch(uint32_t x, uint32_t y, uint32_t z)
{
return ((x & y) ^ ((~x) & z));
}
FN_ uint32_t _Ma(uint32_t x, uint32_t y, uint32_t z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
FN_ uint32_t _S0(uint32_t x)
{
return (_r(x, 2) ^ _r(x, 13) ^ _r(x, 22));
}
FN_ uint32_t _S1(uint32_t x)
{
return (_r(x, 6) ^ _r(x, 11) ^ _r(x, 25));
}
FN_ uint32_t _G0(uint32_t x)
{
return (_r(x, 7) ^ _r(x, 18) ^ (x >> 3));
}
FN_ uint32_t _G1(uint32_t x)
{
return (_r(x, 17) ^ _r(x, 19) ^ (x >> 10));
}
FN_ uint32_t _word(uint8_t *c)
{
return (_shw(c[0], 24) | _shw(c[1], 16) | _shw(c[2], 8) | (c[3]));
}
static void _addbits(sha256_context *ctx, uint32_t n)
{
__CPROVER_assume(__CPROVER_DYNAMIC_OBJECT(ctx));
if (ctx->bits[0] > (0xffffffff - n)) {
ctx->bits[1] = (ctx->bits[1] + 1) & 0xFFFFFFFF;
}
ctx->bits[0] = (ctx->bits[0] + n) & 0xFFFFFFFF;
}
static void _hash(sha256_context *ctx)
{
__CPROVER_assume(__CPROVER_DYNAMIC_OBJECT(ctx));
register uint32_t a, b, c, d, e, f, g, h;
uint32_t t[2];
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
for (uint32_t i = 0; i < 64; i++) {
if (i < 16) {
ctx->W[i] = _word(&ctx->buf[_shw(i, 2)]);
} else {
ctx->W[i] = _G1(ctx->W[i - 2]) + ctx->W[i - 7] +
_G0(ctx->W[i - 15]) + ctx->W[i - 16];
}
t[0] = h + _S1(e) + _Ch(e, f, g) + K[i] + ctx->W[i];
t[1] = _S0(a) + _Ma(a, b, c);
h = g;
g = f;
f = e;
e = d + t[0];
d = c;
c = b;
b = a;
a = t[0] + t[1];
}
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
void sha256_init(sha256_context *ctx)
{
if (ctx != NULL) {
ctx->bits[0] = ctx->bits[1] = ctx->len = 0;
ctx->hash[0] = 0x6a09e667;
ctx->hash[1] = 0xbb67ae85;
ctx->hash[2] = 0x3c6ef372;
ctx->hash[3] = 0xa54ff53a;
ctx->hash[4] = 0x510e527f;
ctx->hash[5] = 0x9b05688c;
ctx->hash[6] = 0x1f83d9ab;
ctx->hash[7] = 0x5be0cd19;
}
}
void sha256_hash(sha256_context *ctx, const void *data, size_t len)
{
const uint8_t *bytes = (const uint8_t *)data;
if ((ctx != NULL) && (bytes != NULL) && (ctx->len < sizeof(ctx->buf))) {
__CPROVER_assume(__CPROVER_DYNAMIC_OBJECT(bytes));
__CPROVER_assume(__CPROVER_DYNAMIC_OBJECT(ctx));
for (size_t i = 0; i < len; i++) {
ctx->buf[ctx->len++] = bytes[i];
if (ctx->len == sizeof(ctx->buf)) {
_hash(ctx);
_addbits(ctx, sizeof(ctx->buf) * 8);
ctx->len = 0;
}
}
}
}
void sha256_done(sha256_context *ctx, uint8_t *hash)
{
register uint32_t i, j;
if (ctx != NULL) {
j = ctx->len % sizeof(ctx->buf);
ctx->buf[j] = 0x80;
for (i = j + 1; i < sizeof(ctx->buf); i++) {
ctx->buf[i] = 0x00;
}
if (ctx->len > 55) {
_hash(ctx);
for (j = 0; j < sizeof(ctx->buf); j++) {
ctx->buf[j] = 0x00;
}
}
_addbits(ctx, ctx->len * 8);
ctx->buf[63] = _shb(ctx->bits[0], 0);
ctx->buf[62] = _shb(ctx->bits[0], 8);
ctx->buf[61] = _shb(ctx->bits[0], 16);
ctx->buf[60] = _shb(ctx->bits[0], 24);
ctx->buf[59] = _shb(ctx->bits[1], 0);
ctx->buf[58] = _shb(ctx->bits[1], 8);
ctx->buf[57] = _shb(ctx->bits[1], 16);
ctx->buf[56] = _shb(ctx->bits[1], 24);
_hash(ctx);
if (hash != NULL) {
for (i = 0, j = 24; i < 4; i++, j -= 8) {
hash[i + 0] = _shb(ctx->hash[0], j);
hash[i + 4] = _shb(ctx->hash[1], j);
hash[i + 8] = _shb(ctx->hash[2], j);
hash[i + 12] = _shb(ctx->hash[3], j);
hash[i + 16] = _shb(ctx->hash[4], j);
hash[i + 20] = _shb(ctx->hash[5], j);
hash[i + 24] = _shb(ctx->hash[6], j);
hash[i + 28] = _shb(ctx->hash[7], j);
}
}
}
}
void sha256(const void *data, size_t len, uint8_t *hash)
{
sha256_context ctx;
sha256_init(&ctx);
sha256_hash(&ctx, data, len);
sha256_done(&ctx, hash);
}
#ifdef __cplusplus
}
#endif
#endif